Preparation and Crystal Structure of K_3 [Mo(NO)-(C₂O₄)₃]·4H₂O. On pentagonal Bipyramidal Complexes with {MoNO}₄ Configuration with Simple Ligands

A. MÜLLER, S. SARKAR, N. MOHAN and R. G. BHATTACHARYYA

Faculty of Chemistry, University of Bielefeld, D-4800 Bielefeld, F.R.G.

Received July 8, 1980

Introduction

The aqueous solution chemistry of mononuclear Mo complexes of the lower oxidation states is still poorly understood. We were able to show that nitrosyl complexes with $\{MoNO\}^n$ (n = 4, 5, 6) configuration [1] can be interconverted by redox reactions [2, 3]. Complexes with n = 5 (such as $[Mo(NO)-(CN)_5]^{3-}$ [3]) and with n = 4 (such as $[Mo(NO)-(CI)_4]^-$ were obtainable by oxidation of $[Mo-(NO)(CN)_5]^{4-}$ (n = 6). Whereas, it has been known for a long time that complexes with the configuration $\{MoNO\}^6$ could be prepared by nitrosylation of MoO_4^{2-} with NH₂OH in alkaline medium [1], we have now shown that the reduction in nearly neutral medium in the presence of several simple ligands yields complexes with $\{MoNO\}^4$ configuration.

^{*}Permanent address: Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India.

TABLE I	Summary (of Cr	ystal and	Intensity	Collection	Data.
			,			

 $[Mo(NO)(C_2O_4)_3]^{3-}$ as well as $[Mo_4(NO)_4S_{13}]^{4-}$ [4] and $[Mo(NO)(H_2NO)(NCS)_4]^{2-}$ [5] belong to this class of compounds. In this paper, we report the preparation and the crystal structure of K₃ [Mo(NO)-(C₂O₄)₃]·4H₂O. A remarkable feature of its structure and that of the other complexes is the seven coordination of Mo, which is rather seldom in the case of transition metal nitrosyl compounds [6]. (Regarding interesting complexes with larger ligands see papers of Wieghardt [7]).

Experimental

Crystals of $K_3[Mo(NO)(C_2O_4)_3] \cdot 4H_2O$ were obtained by reaction of an aqueous solution containing potassium molybdate with NH₂OH · HCl and K₂-C₂O₄ · H₂O. The crystal structure was solved by direct methods and refined by full-matrix least squares to a final *R* value of 0.026 for 1285 independent reflections having $I > 1.96\sigma(I)$ (Syntex P2₁; see Table I). The final atomic coordinates and thermal parameters are given in Table II.

Results and Discussion

The unit cell contains four $K_3[Mo(NO)(C_2O_4)_3]$. 4H₂O. An ORTEP plot of the molecular structure is given in Fig. 1. The structure can be described as a pentagonal bipyramid with the nitrosyl group in one of the apical positions.

Mo, O1, O4, O5, O8 and O12 lie nearly in one plane (sum of the angles: 359.2°) while the remaining oxygen atom (O9) is slightly non-linear with the

a	14.026(3) Å
b	7.871(1) A
c	15.558(3) A
β	91.77(2)°
V	1716.8 A ³
Ζ	4
Density	$2.24 \text{ g/cm}^3 \text{ calcd.}$
	2.20 g/cm^3 (exptl.)
Space group	$Cc-C_s^4$ (monoclinic)
Crystal size	$0.1 \times 0.1 \times 0.1$ mm
Radiation	MoKa; λ(Ka ₁) 0.70926, λ(Ka ₂) 0.71354 Å, graphite monochromator
Absorption coefficient	15.6 cm^{-1}
Data collection	$\theta - 2\theta$ mode, range 3-54°, 2 θ scan speed 2° · · · 20°/min depending on intensity, background/scan time ratio 1:1, scan from 1.0° below K α_1 to 1.0° above K α_2 in 2 θ ; reference reflection every 50 reflections

	x/a	y/b	z/c	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
K1	-0.0407(1)	0.1027(2)	0.2059(1)	4.40(9)	2.72(8)	2.12(6)	0.80(8)	0.03(6)	-0.31(6)
К2	-0.2536(1)	0.4389(2)	0.1501(1)	2.25(7)	3.66(9)	3.69(8)	0.18(7)	0.29(6)	1.29(7)
K3	0.2509(1)	0.2787(2)	-0.0991(1)	2.40(8)	3.79(9)	5.70(11)	0.24(7)	-0.02(7)	-1.76(8)
Мо	0.0 ^b	0.41059(6)	0.0 ^b	1.71(2)	1.41(2)	1.45(2)	-0.08(3)	0.21(1)	0.03(3)
01	-0.0054(4)	0.1977(6)	-0.0851(3)	3.2(2)	2.3(2)	2.0(2)	-0.2(2)	0.5(2)	-0.3(2)
02	-0.0765(5)	-0.0433(7)	-0.1216(4)	5.8(3)	3.4(3)	3.1(3)	1.5(3)	1.3(2)	1.6(2)
O3	-0.1876(4)	0.0070(7)	0.0238(3)	5.0(3)	2.5(2)	3.6(3)	-1.9(2)	1.7(2)	-0.6(2)
04	-0.1040(3)	0.2447(6)	0.0445(3)	2.6(2)	1.8(2)	1.7(2)	-0.5(2)	0.4(2)	-0.1(2)
O5	-0.0712(3)	0.5250(6)	0.1006(3)	2.2(2)	1.7(2)	2.5(2)	-0.8(2)	0.4(2)	-0.1(2)
06	-0.0910(4)	0.7503(7)	0.1850(3)	4.1(3)	2.9(2)	3.4(3)	-0.4(2)	2.0(2)	-0.7(2)
07	0.0474(4)	0.9080(6)	0.0827(3)	4.1(3)	1.9(2)	3.6(2)	-0.4(2)	0.9(2)	-1.0(2)
08	0.0575(3)	0.6597(6)	0.0160(3)	2.4(2)	2.0(2)	2.4(2)	-0.5(2)	0.6(2)	-0.1(2)
09	-0.1009(3)	0.5213(6)	-0.0849(3)	1.5(2)	2.5(2)	2.1(2)	0.2(2)	0.5(2)	0.5(2)
O10	-0.1200(4)	0.6275(6)	-0.2163(3)	2.8(2)	2.2(2)	1.8(2)	0.3(2)	-0.6(2)	0.2(2)
011	0.0767(4)	0.5914(8)	-0.2338(3)	2.7(2)	5.2(3)	2.1(2)	-0.1(2)	1.1(2)	1.3(2)
012	0.0829(3)	0.4638(6)	-0.1060(3)	1.8(2)	1.9(2)	1.8(2)	0.3(2)	0.6(2)	0.0(2)
N	0.0953(4)	0.3185(7)	0.0622(3)	2.3(3)	1.4(2)	1.4(2)	0.0(2)	-0.2(2)	0.3(2)
0	0.1621(4)	0.2573(6)	0.0994(3)	2.5(2)	2.5(2)	3.7(3)	0.5(2)	-0.9(2)	0.0(2)
C1	-0.0665(5)	0.0814(9)	-0.0749(4)	3.2(4)	2.0(3)	2.3(3)	-0.2(3)	0.3(3)	0.1(3)
C2	-0.1259(5)	0.1073(9)	0.0029(4)	2.7(3)	2.1(3)	2.4(3)	-0.3(3)	-0.2(3)	0.1(3)
C3	-0.0531(5)	0.6779(9)	0.1265(5)	2.3(3)	2.1(3)	2.6(3)	0.0(3)	0.0(3)	0.3(3)
C4	0.0239(5)	0.7606(9)	0.0734(4)	2.7(3)	2.1(3)	1.8(3)	0.0(3)	0.1(2)	0.3(3)
C5	-0.0716(5)	0.5669(8)	-0.1586(4)	2.4(3)	1.1(3)	1.8(3)	-0.2(2)	0.4(2)	0.6(2)
C6	0.0389(5)	0.5415(9)	-0.1700(4)	2.0(3)	1.9(3)	2.5(3)	0.2(3)	0.3(3)	0.4(2)
(H2O)1	-0.2632(4)	0.0943(7)	0.1861(4)	4.3(3)	3.8(3)	4.6(3)	1.0(3)	0.4(2)	0.8(3)
(H2O)2	-0.3760(4)	0.4272(9)	0.2877(4)	3.1(3)	6.1(4)	3.9(3)	-1.1(3)	0.9(2)	-0.8(3)
(H2O)3	0.2595(5)	0.2400(11)	0.3075(5)	5.4(4)	9.9(6)	6.9(5)	2.2(4)	1.0(3)	3.6(4)
(H2O)4	-0.3016(5)	0.4466(9)	-0.0411(5)	3.8(3)	6.6(4)	7.1(4)	-0.1(3)	1.9(3)	-0.8(3)

TABLE II. K₃[Mo(NO)(C₂O₄)₃] •4H₂O: Atomic Coordinates and Thermal Parameters.^a

^aAnisotropic temperature factor is defined by $exp[-\frac{1}{4}(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*]$ with the B_{ijs} in A^2 . ^bHled fixed to define the origin.

Fig. 1. Molecular structure of $[Mo(NO)(C_2O_4)_3]^{3-}$ (ORTEPplot).

Mo-N-group (O9-Mo-N: $173.3(2)^{\circ}$). The Mo-O distances, with the exception of Mo-O1 and Mo-O8 are almost identical (average: 2.091 Å). The other 2 Mo-O distances (average: 2.134 Å) are slightly larger. The Mo-N and N-O bond distances (1.780(5) Å and 1.188(7) Å) and the MoNO angle (176.0(5)°) also show good agreement with the corresponding values in other compounds with {MoNO}⁴ configuration, as for instance $(NH_4)_4 [Mo_4(NO)_4 S_{13}] \cdot 2H_2O$, in which all Mo atoms have the coordination number 7, too (see also [6]).

Whereas complexes with {MoNO}⁶ configuration can be prepared by nitrosylation of MoO₄² with NH₂OH in strong alkaline medium like K₄ [Mo(NO)-(CN)₅] [1], the corresponding reaction in nearly neutral medium gives yellow solutions containing complexes with {MoNO}⁴ configuration. Depending on the pH value and the type of other ligands, interesting complexes like $[Mo_4(NO)_4S_{13}]^{4-}$ [4] (a tetranuclear complex with five S₂² ligands), [Mo-(NO)(H₂NO)(NCS)₄]²⁻ [5] or [Mo(NO)(CH₃)₂-CNO(NCS)₄]²⁻ [8] (oximato (O,N) complex) can be isolated. All compounds have a pentagonal bipyramidal structure, which seems to be characteristic for the {MoNO}⁴ configuration type complexes containing at least one bidentate ligand (see also [8]).

Acknowledgements

We thank the Deutsche Forschungsgemeinscahaft, the Fonds der Chemischen Industrie and the Minister für Wissenschaft und Forschung (NRW) for financial support.

References

- 1 J. H. Enemark and R. D. Feltham, Coord. Chem. Rev., 13, 339 (1974); K. G. Caulton, Coord. Chem. Rev., 14, 317 (1975).
- 2 S. Sarkar and A. Müller, Angew. Chem. Int. Ed. Engl., 16, 183 (1977); ibid. 89, 479 (1977).

- 3 S. Sarkar and A. Müller, Z. Naturforsch., 33b, 1053 (1978).
- 4 A. Müller, W. Eltzner, and N. Mohan, Angew. Chem. Int. Ed. Engl., 18, 168 (1979).
- 5 A. Müller, P. J. Aymonino and W. Eltzner, to be published.
- M. G. B. Drew, Progr. Inorg. Chem., 23, 67 (1977); R. D. Feltham and J. H. Enemark, Topics in Stereochemistry', Vol. 12 (Ed. G. L. Geoffry), J. Wiley, New York, in press.
 K. Wieghardt, W. Holzbach, B. Nuber and J. Weiss, Chem.
- 7 K. Wieghardt, W. Holzbach, B. Nuber and J. Weiss, Chem. Ber., 113, 629 (1980) and references therein.
- 8 A. Müller and N. Mohan, Z. Anorg. Allg. Chem. (in press).